Beta-adrenergic receptors: astrocytic localization in the adult visual cortex and their relation to catecholamine axon terminals as revealed by electron microscopic immunocytochemistry.
نویسنده
چکیده
It has long been recognized that noradrenaline, the most abundant catecholamine within the visual cortex, plays important roles in modulating the sensitivity of cortical neurons to visual stimuli. However, whether or not these noradrenaline effects are confined to a discrete synaptic specialization or mediated by diffuse modulation of a group of synapses has remained an issue open for debate. The aim of this study was to examine the cellular basis for noradrenaline action within the visual cortex of adult rats and cats. To this end, I used electron microscopic immunocytochemistry to examine the relationship between (1) catecholamine axon terminals and beta-adrenergic receptors (beta AR), which, together, may define the effective sphere of noradrenaline modulation; and then (2) these putative sites for catecholamine modulation and axospinous asymmetric junctions where excitatory neurotransmission is likely to dominate. Antibodies against beta AR were used at light and electron microscopic levels on the visual cortex of rat and cat. Rat visual cortex was also labeled simultaneously for beta AR and the catecholamine-synthesizing enzyme, tyrosine hydroxylase (TH), to determine the ultrastructural relationships between catecholamine terminals and beta AR. Immunoperoxidase labeling revealed that beta AR404, a polyclonal antibody directed against the C-terminal tail of hamster lung beta AR (beta 2-type), recognized astrocytic processes predominantly. In contrast, beta AR248, a polyclonal antibody directed against the third cytoplasmic loop, recognized neuronal perikarya as observed in previous studies. Dual labeling for beta AR404 and TH revealed that catecholamine axon terminals that contained numerous vesicles formed direct contacts with astrocytic processes exhibiting beta AR404 immunoreactivity. However, some catecholamine axon terminals that lacked dense clusters of vesicles were positioned away from beta AR404-immunoreactive astrocytes. Frequently, beta AR-immunoreactive astrocytic processes surrounded asymmetric axospinous junctions while also contacting catecholamine axon terminals. These observations support the possibility that, through activation of astrocytic beta AR, noradrenaline modulates astrocytic uptake mechanism for excitatory amino acids, such as L-glutamate. Astrocytic beta AR might also define the effective sphere of catecholamine modulation through alterations in the morphology of distal astrocytic processes and the permeability of gap junctions formed between astrocytes.
منابع مشابه
@-Adrenergic Receptors: Astrocytic Localization in the Adult Visual Cortex and Their Relation to Catecholamine Axon Terminals as Revealed by Electron Microscopic Immunocytochemistry
It has long been recognized that noradrenaline, the most abundant catecholamine within the visual cortex, plays important roles in modulating the sensitivity of cortical neurons to visual stimuli. However, whether or not these noradrenaline effects are confined to a discrete synaptic specialization or mediated by diffuse modulation of a group of synapses has remained an issue open for debate. T...
متن کاملCellular and subcellular sites for noradrenergic action in the monkey dorsolateral prefrontal cortex as revealed by the immunocytochemical localization of noradrenergic receptors and axons.
A series of electron microscopic immunocytochemical studies was performed to analyze subcellular sites for noradrenergic modulation in monkey prefrontal cortex. One out of 12 noradrenergic varicosities, identified by dopamine beta-hydroxylase immunocytochemistry within single ultrathin sections, forms morphologically identifiable junctions with small dendrites and spines. Accordingly, alpha2-ad...
متن کاملMetabotropic glutamate receptor 5 shows different patterns of localization within the parallel visual pathways in macaque and squirrel monkeys
Glutamate is used as an excitatory neurotransmitter by the koniocellular (K), magnocellular (M), and parvocellular (P) pathways to transfer signals from the primate lateral geniculate nucleus (LGN) to primary visual cortex (V1). Glutamate acts through both fast ionotropic receptors, which appear to carry the main sensory message, and slower, modulatory metabotropic receptors (mGluRs). In this s...
متن کاملCellular and subcellular localization of NMDA-R1 subunit immunoreactivity in the visual cortex of adult and neonatal rats.
NMDA receptor activation can alter synaptic strength, cause cell death, and may modulate the release of glutamate and other neurotransmitters. Using a specific and selective antiserum directed against the R1 subunit of the NMDA receptor, we examined (1) whether NMDA receptors in the adult rat visual cortex are exclusively postsynaptic or also presynaptic and (2) whether NMDA-R1 subunits are inc...
متن کاملCellular and Synaptic Localization of EAAT2a in Human Cerebral Cortex
We used light and electron microscopic immunocytochemical techniques to analyze the distribution, cellular and synaptic localization of EAAT2, the main glutamate transporter, in normal human neocortex. EAAT2a-immunoreactivity (ir) was in all layers and consisted of small neuropilar puncta and rare cells. In white matter EAAT2a+ cells were numerous. Electron microscopic studies showed that in gr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 12 3 شماره
صفحات -
تاریخ انتشار 1992